Effects of acoustic heterogeneities on transcranial brain imaging with microwave-induced thermoacoustic tomography.
نویسندگان
چکیده
The effects of acoustic heterogeneities on transcranial brain imaging with microwave-induced thermoacoustic tomography were studied. A numerical model for calculating the propagation of thermoacoustic waves through the skull was developed and experimentally examined. The model takes into account wave reflection and refraction at the skull surfaces and therefore provides improved accuracy for the reconstruction. To evaluate when the skull-induced effects could be ignored in reconstruction, the reconstructed images obtained by the proposed method were further compared with those obtained with the method based on homogeneous acoustic properties. From simulation and experimental results, it was found that when the target region is close to the center of the brain, the effects caused by the skull layer are minimal and both reconstruction methods work well. As the target region becomes closer to the interface between the skull and brain tissue, however, the skull-induced distortion becomes increasingly severe, and the reconstructed image would be strongly distorted without correcting those effects. In this case, the proposed numerical method can improve image quality by taking into consideration the wave refraction and mode conversion at the skull surfaces. This work is important for obtaining good brain images when the thickness of the skull cannot be ignored.
منابع مشابه
Scanning thermoacoustic tomography in biological tissue.
Microwave-induced thermoacoustic tomography was explored to image biological tissue. Short microwave pulses irradiated tissue to generate acoustic waves by thermoelastic expansion. The microwave-induced thermoacoustic waves were detected with a focused ultrasonic transducer. Each time-domain signal from the ultrasonic transducer represented a one-dimensional image along the acoustic axis of the...
متن کاملThermoacoustic tomography with correction for acoustic speed variations.
Thermoacoustic tomography (TAT) is a technique that measures microwave-induced thermoacoustic waves at the boundary of biological tissue and generates images of internal microwave absorption distributions from the measurements. Existing reconstruction algorithms for TAT are based on the assumption that the acoustic properties in the tissue are homogeneous. Biological tissue, however, has hetero...
متن کاملMicrowave-induced thermoacoustic tomography using multi-sector scanning.
A study of microwave-induced thermoacoustic tomography of inhomogeneous tissues using multi-sector scanning is presented. A short-pulsed microwave beam is used to irradiate the tissue samples. The microwave absorption excites time-resolved acoustic waves by thermoelastic expansion. The amplitudes of the acoustic waves are strongly related to locally absorbed microwave-energy density. The acoust...
متن کاملSignal processing in scanning thermoacoustic tomography in biological tissues.
Microwave-induced thermoacoustic tomography was explored to image biological tissues. Short microwave pulses irradiated tissues to generate acoustic waves by thermoelastic expansion. The microwave-induced thermoacoustic waves were detected with a focused ultrasonic transducer to obtain two-dimensional tomographic images of biological tissues. The dependence of the axial and the lateral resoluti...
متن کاملImage distortion in thermoacoustic tomography caused by microwave diffraction.
We report an intrinsic image distortion in microwave-induced thermoacoustic tomography. The distortion, due to microwave diffraction in the object to be imaged, leads to nonuniform excitation of acoustic pressure during microwave illumination. Both numerical simulations and phantom experiments demonstrate this phenomenon. A method of partial correction is also provided.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Medical physics
دوره 35 7Part1 شماره
صفحات -
تاریخ انتشار 2008